

ninhydrin as spray reagent. Leucine, valine and *N*-monomethylalanine were identified by comparison with authentic samples.

Compound **1** (7 mg) was deformylated by treatment with 0.5 N HCl in MeOH at room temp. for 45 hr. It was purified by prep. TLC and crystallization from MeOH furnished compound **4**, mp 179–180°, which was identified as nummularine-P (mmp, co-TLC and superimposable IR). Compound **4** (4.5 mg) was treated with HCHO and NaBH₄ and the reaction product purified by prep. TLC and crystallisation from MeOH gave the *N*-methylated product, compound **5**, mp 91–92°. Compound **5** was identified as sativanine-H by direct comparison with an authentic sample (mmp, co-TLC and superimposable IR).

Acknowledgements—The authors are grateful to Dr G. Eckhardt (Mass Spectroscopic Division, Institut für Organische Chemie und Biochemie der Universität Bonn, F.R.G.) for spectral analysis. S.D. and J.P.S. are thankful to C.S.I.R. and U.G.C., New Delhi respectively for financial assistance.

REFERENCES

1. Kirtikar, K. R. and Basu, B. D. (1975) *Indian Medicinal Plants* Vol. 1, p. 594. Lalit Mohan Basu, Allahabad.
2. Tschesche, R., Shah, A. H., Pandey, V. B., Singh, J. P., Radloff, M. V. and Eckhardt, G. (1981) *Pharmazie* **36**, 511.
3. Shah, A. H., Pandey, V. B., Eckhardt, G. and Tschesche, R. (1985) *Phytochemistry* **24**, 2768.
4. Shah, A. H., Al-Yahya, M. A., Devi, S. and Pandey, V. B. (1987) *Phytochemistry* **26**, 1230.
5. Tschesche, R., David, S. T., Uhlendorf, J. and Fehlhaber, H. W. (1972) *Chem. Ber.* **105**, 3106.
6. Shah, A. H., Pandey, V. B., Eckhardt, G. and Tschesche, R. (1984) *Phytochemistry* **23**, 931.
7. Dwivedi, S. P. D., Pandey, V. B., Shah, A. H. and Eckhardt, G. (1987) *J. Nat. Prod.* (in press).
8. Shah, A. H., Miana, G. A., Devi, S. and Pandey, V. B. (1986) *Planta Med.* 500.
9. Shamma, M. (1972) *The Isoquinoline Alkaloids*, p. 40. Academic Press, New York.
10. Manske, R. H. F. (1937) *Can. J. Res.* **B15**, 159.
11. Tschesche, R., Kaußmann, E. U. and Fehlhaber, H.-W. (1974) *Chem. Ber.* **105**, 3094.

Phytochemistry, Vol. 27, No. 6, pp. 1918–1919, 1988.
Printed in Great Britain.

0031 9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc.

A SECO-PHTHALIDEISOQUINOLINE ALKALOID FROM *FUMARIA INDICA* SEEDS

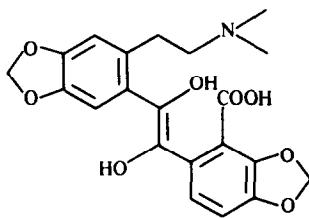
Y. C. TRIPATHI, V. B. PANDEY, N. K. R. PATHAK and M. BISWAS

Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India

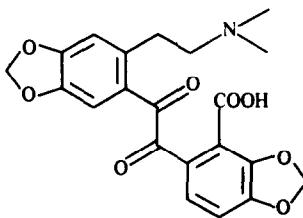
(Received 3 August 1987)

Key Word Index—*Fumaria indica*; Fumariaceae; seed; seco-phthalideisoquinoline alkaloid; narceimicine.

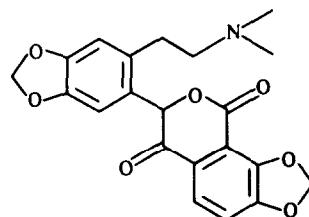
Abstract—From the seeds of *Fumaria indica*, a previously undescribed seco-phthalideisoquinoline alkaloid, narceimicine, has been isolated and its structure established by spectroscopic methods.

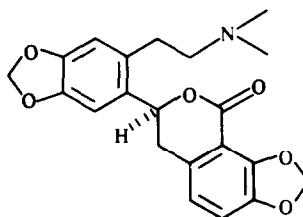

INTRODUCTION

In continuation of our work on the alkaloids of *Fumaria indica* seeds [1–5], we report here the isolation and characterization of a new alkaloid, designated narceimicine.


RESULTS AND DISCUSSION

Chromatographic resolution of the crude base fraction of the defatted seeds of *F. indica* furnished pale yellow granules of narceimicine, mp 242–246° (MeOH–H₂O),


C₂₁H₂₁NO₈ ([M]⁺, *m/z* 415). It showed characteristic UV absorption maxima comparable with those of *trans*-stilbene [6]. The presence of a carboxylic group in the molecule was indicated by a band at 1670 cm^{–1} in the IR spectrum and a positive colour test with Bromothymol Blue. The 90 MHz ¹H NMR (CF₃CO₂D) spectrum of narceimicine is comparable with that of narceimine (2) [7] and showed signals for two methylenedioxy groups as a pair of 2H singlets at δ 6.12 and 6.31, two *N*-methyl groups centred at δ 3.05, two isolated aromatic hydrogens as singlets at δ 7.49 and 6.96 and two vicinal aromatic hydrogens as an AB quartet at δ 7.47 and 7.16 (*J*


1

2

a

3

= 8 Hz), in addition to a 4H broad singlet at δ 3.52 for two methylenes of a dimethylaminoethyl side chain. The ^1H NMR spectral similarity of narceimicine with that of narceimine and the fact that the $[\text{M}]^+$ peak of the former is two mass units higher than that of the latter led to the logical inference that narceimicine has an α -ketol system instead of a diketone as is present in narceimine. This assumption gained credence from the characteristic colour reaction of α -ketols with cupric acetate [8]. But the fact that the ^1H NMR spectrum of narceimicine lacks a carbonyl hydrogen signal as can be expected from α -ketol, it was assumed that the alkaloid exists in the endiol form (1). The mass spectrum of 1 showed a $[\text{M}]^+$ at m/z 415 and an important peak at m/z 397 ($[\text{M} - \text{H}_2\text{O}]^+$, ion a), which underwent a fragmentation pattern comparable to peshawarine (3) [9].

EXPERIMENTAL

Dried and powdered seeds of *F. indica* (Haussk) Pugsley (3 kg) were successively extracted with petrol (60–80°) and EtOH (95%) in a Soxhlet extractor. The EtOH ext was concd to a dark brown syrup and stirred with aq citric acid (7%) for 10 hr. The acidic soln was basified with NH₄OH and exhaustively extd with CHCl₃. The CHCl₃ ext was subjected to CC on silica gel with solvents of increasing polarity.

Narceimicine (1). Fractions from $\text{CHCl}_3\text{-MeOH}$ (9:1) elution were combined according to TLC, and on concn they furnished a light yellow solid. Crystallization from $\text{MeOH-H}_2\text{O}$ furnished light yellow granules of narceimicine (15 mg), $\text{C}_{21}\text{H}_{21}\text{NO}_8$ ($[\text{M}]^+$, m/z 415), mp 242–246° (dec.), R_f 0.21 (MeOH), 0.58 ($\text{MeOH-H}_2\text{O}$, 9:1): sol in HOAc, sparingly sol. in Me_2CO , MeOH and insoluble in CHCl_3 . It gave a yellow colour with Bromothymol Blue and a reddish yellow one with Dragendorff's

reagent. The alkaloid exhibited a brown-red colouration both on silica gel TLC plate and PC after spraying with a MeOH soln of cupric acetate and heating them to 60°. UV λ_{max} (MeOH): 228 (4.10), 300 (4.38), 310 sh (4.18), 330 (4.42) nm; IR ν_{max} (KBr) 1670, 1620, 1495, 1250 cm^{-1} ; MS: m/z 415 ($[\text{M}]^+$, 3%), 397 (60), 352 (7), 322 (10), 222 (20), 206 (15), 203 (12), 164 (7), 163 (5), 150 (12), 149 (9), 135 (10), 134 (7), 58 (100).

Acknowledgements—Thanks are due to Dr G. Eckhardt, (Mass Spectrometry Division, Institut für Organische Chemie der Universität Bonn, F.R.G.) for spectral analysis and Professor A. B. Ray (Department of Medicinal Chemistry, I.M.S., B.H.U.) for helpful suggestions. The authors are grateful to C.C.R.A.S., New Delhi for financial assistance.

REFERENCES

1. Pandey, V. B., Ray, A. B. and Dasgupta, B. (1974) *Curr. Sci.* **43**, 748.
2. Bhattacharya, S. K., Pandey, V. B., Ray, A. B. and Dasgupta, B. (1976) *Arzneimittel Forsch.* **26**, 2187.
3. Pandey, V. B., Ray, A. B. and Dasgupta, B. (1979) *Phytochemistry* **18**, 695.
4. Kumar, A., Pandey, V. B., Seth, K. K., Dasgupta, B. and Bhattacharya, S. K. (1986), *Planta Med.* 324.
5. Tripathi, Y. C. and Pandey, V. B. (1987) *Pharmazie* (in press).
6. Silverstein, R. M., Bassler, C. G. and Morrill, T. C. (1974) *Spectrometric Identification of Organic Compounds* 3rd Edn, p. 251, Wiley, New York.
7. Seth, K. K., Pandey, V. B., Ray, A. B., Dasgupta, B. and Shah, S. A. H. (1979) *Chem. Ind.* 744.
8. Fieser, L. F. and Fieser, M. (1967) *Reagents for Organic Synthesis* Vol. 1, p. 159.
9. Shamma, M., Rothenberg, A. S., Jayatilake, G. S. and Hussain, S. F. (1978) *Tetrahedron* 635.